Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract A customized atmospheric‐pressure spatial atomic layer deposition (AP‐SALD) system is designed and implemented, which enables mechatronic control of key process parameters, including gap size and parallel alignment. A showerhead depositor delivers precursors to the substrate while linear actuators and capacitance probe sensors actively maintain gap size and parallel alignment through multiple‐axis tilt and closed‐loop feedback control. Digital control of geometric process variables with active monitoring is facilitated with a custom software control package and user interface. AP‐SALD of TiO2is performed to validate self‐limiting deposition with the system. A novel multi‐axis printing methodology is introduced usingx‐yposition control to define a customized motion path, which enables an improvement in the thickness uniformity by reducing variations from 8% to 2%. In the future, this mechatronic system will enable experimental tuning of parameters that can inform multi‐physics modeling to gain a deeper understanding of AP‐SALD process tolerances, enabling new pathways for non‐traditional SALD processing that can push the technology towards large‐scale manufacturing.more » « less
- 
            Abstract Although spectrally selective materials play a key role in existing and emerging solar thermal technologies, temperature‐related degradation currently limits their use to below 700 °C in vacuum and even lower temperatures in air. Here a solar‐transparent refractory aerogel that offers stable performance up to 800 °C in air is demonstrated, which is significantly greater than its silica counterpart. This improved stability is attributed to the formation of a refractory aluminum silicate phase, which is synthesized using a conformal single cycle of atomic layer deposition within the high‐aspect‐ratio pores of silica aerogels. Based on direct heat loss measurements, the transparent refractory aerogel achieves a receiver efficiency of 75% at 100 suns and an absorber temperature of 700 °C, which is a 5% improvement over the state of the art. Transparent refractory aerogels may find widespread applicability in solar thermal technologies by enabling the use of lower‐cost optical focusing systems and eliminating the need for highly evacuated receivers. In particular, a shift to higher operating temperatures while maintaining a high receiver efficiency can enable the use of advanced supercritical CO2power cycles and ultimately translate to an ≈10% (absolute) improvement in solar‐to‐electrical conversion efficiency relative to existing linear concentrating systems.more » « less
- 
            Abstract New deposition techniques for amorphous oxide semiconductors compatible with silicon back end of line manufacturing are needed for 3D monolithic integration of thin‐film electronics. Here, three atomic layer deposition (ALD) processes are compared for the fabrication of amorphous zinc tin oxide (ZTO) channels in bottom‐gate, top‐contact n‐channel transistors. As‐deposited ZTO films, made by ALD at 150–200 °C, exhibit semiconducting, enhancement‐mode behavior with electron mobility as high as 13 cm2V−1s−1, due to a low density of oxygen‐related defects. ZTO deposited at 200 °C using a hybrid thermal‐plasma ALD process with an optimal tin composition of 21%, post‐annealed at 400 °C, shows excellent performance with a record high mobility of 22.1 cm2V–1s–1and a subthreshold slope of 0.29 V dec–1. Increasing the deposition temperature and performing post‐deposition anneals at 300–500 °C lead to an increased density of the X‐ray amorphous ZTO film, improving its electrical properties. By optimizing the ZTO active layer thickness and using a high‐kgate insulator (ALD Al2O3), the transistor switching voltage is lowered, enabling electrical compatibility with silicon integrated circuits. This work opens the possibility of monolithic integration of ALD ZTO‐based thin‐film electronics with silicon integrated circuits or onto large‐area flexible substrates.more » « less
- 
            Abstract Marine biofouling is a sticky global problem that hinders maritime industries. Various microscale surface structures inspired by marine biological species have been explored for their anti‐fouling properties. However, systematic studies of anti‐marine‐fouling performance on surface architectures with characteristic length‐scales spanning from below 100 nm to greater than 10 µm are generally lacking. Herein, a study on the rational design and fabrication of ZnO/Al2O3core–shell nanowire architectures with tunable geometries (length, spacing, and branching) and surface chemistry is presented. The ability of the nanowires to significantly delay or prevent marine biofouling is demonstrated. Compared to planar surfaces, hydrophilic nanowires can reduce fouling coverage by up to ≈60% after 20 days. The fouling reduction mechanism is mainly due to two geometric effects: reduced effective settlement area and mechanical cell penetration. Additionally, superhydrophobic nanowires can completely prevent marine biofouling for up to 22 days. The nanowire surfaces are transparent across the visible spectrum, making them applicable to windows and oceanographic sensors. Through the rational control of surface nano‐architectures, the coupled relationships between wettability, transparency, and anti‐biofouling performance are identified. It is envisioned that the insights gained from the work can be used to systematically design surfaces that reduce marine biofouling in various industrial settings.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
